hexane. Evaporation of the extract followed by chromatography on alumina gave several fractions. The hexane eluate was evaporated in vacuo under nitrogen to give a yellow oil. The oil was sublimed at $120^{\circ}(0.5 \mathrm{~mm}$.) giving a yellow oil (ca. 0.1 g .), which was identified as anhydrovitamin A by ultraviolet absorption maxima (351,368 , and $389 \mathrm{~m} \mu$) and by its infrared spectrum.
Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{28}$: $\mathrm{C}, 89.49 ; \mathrm{H}, 10.51$. Found: C, 89.08; H, 10.67.

The sublimation residue was a yellow solid which gave yellow crystals, m.p. $120-125^{\circ}$. This compound showed an ultraviolet maximum at $323 \mathrm{~m} \mu$ and showed the presence of an acetoxy group by the infrared spectrum.

Anal. Found: C, $74.25 ; \mathrm{H}, 9.3 \overline{5} ;$ mol. wt. in $\mathrm{CH}_{2} \mathrm{Br}_{2}, 713$.
Reaction of Vitamin A Acetate with Chromium Hexacarbonyl. -Vitamin A acetate (1.0 g., 3.01 mmoles) was allowed to react with chromium hexacarbonyl (1.0 g ., 4.55 mmoles) in 7 ml . of n-butyl ether and 3 ml . of hexane. The addition of hexane to the reaction mixture was to prevent sublimation of chromium hexacarbonyl during the reaction. The reaction was continued for 18 hr . under nitrogen at gentle reflux. During the reaction 250 ml . of a gas was evolved. Greenish brown precipitates were formed and the solution was yellow. The solution was decanted and the solvent was removed in vacuo. The greenish yellow oily residue was separated by chromatography on deactivated alumina. Elution with hexane gave a yellow semisolid which on sublimation at $110^{\circ}(0.5 \mathrm{~mm}$.) gave ca. 0.2 g . of a yellow liquid. This was found to have a composition near $\mathrm{C}_{n 0} \mathrm{H}_{30}$ as indicated by elemental analysis.

Anal. Calcd. for $\mathrm{C}_{2}, \mathrm{H}_{8}$: C, 88.81; H, 11.19. Found: C, 88.09; H, 11.13.

The infrared spectrum showed neither terminal vinyl nor vinylidene groups. The ultraviolet spectrum exhibited a maximum at about $324 \mathrm{~m} \mu$, showing that 5 conjugated double bonds are present as in vitamin A acetate (absorption maximum at $327 \mathrm{~m} \mu$). The greenish brown precipitate front the reaction mixture turned to a deep brown color on exposure to air. This precipitate was washed with acetone and the color changed again to yield a mixed green and red precipitate. The mixed precipitate was found to be soluble in water resulting in the formation of a blue-green aqueous solution. On the addition of aqueous alkali, the solution gave a blue precipitate which was probably chromic hydroxide. Therefore the original greenish brown precipitate from the reaction mixture may contain chromous acetate.

The benzene eluate of the chromatography yielded a yellow senisolid on evaporation. In the ultraviolet region it had maxima at 313 and $300 \mathrm{~m} \mu$ and in the infrared it showed absorption
due to an acetoxy group. The infrared spectrun indicated similarity of its structure to that of vitamin A acetate, but the ultraviolet maxima are different from those of vitamin A acetate.

Nuclear Magnetic Resonance Results.-Table I shows the peak position, splitting, relative ratio of the areas, coupling constants, and assignment of protons to vitamin A acetate and its iron tricarbonyl π-conıplex (I).

		TAbl		
			Coupl-	
Peak		ratio	ing	
position		of	const.,	
(t)	Splitting	area	J (c.p.s.)	Assignnient
		min A	Acetate	
3.68	d	1	13	$=\mathrm{CH}-$
3.95	s	2		$=\mathrm{CH}-$
4.50	d	1	13	$=\mathrm{CH}-$
5.35	d	2	14	$-\mathrm{CH}_{2}-\mathrm{O}-$
8.02	s	3		$\mathrm{CH}_{3}-\mathrm{CO}-$
8.10	s	6		$\mathrm{CH}_{3}-\mathrm{C}$
8.14	s	3		$\mathrm{CH}_{3}-\mathrm{C}$
8.30	9	4		$-\mathrm{CH}_{2}-$
8.5	multi.	2		$-\mathrm{CH}_{2}-$
9.00	s	6		$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}$
	$\operatorname{anin} \mathrm{A}$	tate	on Tricar	
4.0	nunlti.	2	?	$=\mathrm{CH}-$
5.75	multi.	4	?	$-\mathrm{CH}-$
7.8	s	3		$\mathrm{CH}_{3}-\mathrm{C}=$
8.0	S	6		$\begin{gathered} \mathrm{CH}_{3}-\mathrm{CO} \text { and } \\ \mathrm{CH}_{3}-\mathrm{C} \end{gathered}$
8.2	s	3		$\mathrm{CH}_{3}-\mathrm{C}$
8.32	multi.	4		$-\mathrm{CH}_{2}-$
8.42	nulti.	2		
9.0	s	6		$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}$

Acknowledgment.-The authors wish to express their appreciation for financial support from the National Institutes of Health, United States Public Health Service, Grant RG-8921, and to Hofmann-LaRoche and the U. S. Vitamin Co. for samples of cry'stalline vitamin A acetate.

Potential Anticancer Agents. I. Schiff Bases and Hydrazone Derivatives of Pyrimidine-4-carboxaldehydes ${ }^{1}$

Clalde Piantadosi, Vilhualmur G. Skllason, J. Logan Irvin, J. Mefyers Powell, and Lynots Hall
Departments of Pharmaceutical Chemistry and Biochemistry, University of North Carolina, Chapel Hill, North Carolina

Received August 23, 1963

Abstract

A series of hydrazone derivatives and Schiff bases have been prepared by the interaction of the appropriate anine, hydrazine, or hydrazide with substituted and unsubstituted 6-hydroxy-2-thiopyrimidine-4-carboxaldehydes. Several 5 - and N-1-substituted thiopyrimidine-4-carboxaldehydes have also been prepared, and in addition the ultraviolet spectra of the \boldsymbol{N}-methylpyrimidine acetals have been determined. These compounds were tested v s. the Ehrlich ascites carcinoma in mice.

The interesting biological properties of pyrimidine derivatives, notably as antimetabolites and as potential inhibitors of cancerous growth, have resulted in the synthesis of a large number of related compounds. ${ }^{2}$

The present investigation was prompted by the

[^0]possibility that examination of a wider spectrum of pyrimidine-4-carboxaldehyde derivatives might lead to more potent inhibitors of nucleic acid metabolism of the cells. Consequently, a series of Schiff bases and hy-
(2) (a) A. Giner-Sorolia, l. Zimmerman, and A. Bendich, J. Am. Chem, Soc. 81,2515 (1959); (b) H. C. Koppel, R. H. Springer, R. K. Robins, F H. Schneider, and C. C. Cheng, J. Org. Chem., 27, 2173 (1962); (c) L. O. Ross, E. M. Action, W. A. Skinner, L. Goodman, and B. R. Baker, ibid,, 26, 3395 (1961): (d) R. H. Wiley, A. B. Canon, and K. F. Hussung, J. Med. Chem., 6. 333 (1963).

Table I

No.	R	${ }^{\text {R }}$	M.p., ${ }^{\circ} \mathrm{C}$.	Yield,	Formula	$\begin{gathered} \text { Carbor } \\ \text { Calcd. } \end{gathered}$	$\begin{gathered} \text { a, } \% \text { ound } \\ \text { Fooun } \end{gathered}$	$\underset{\substack{\text {-Hydrog } \\ \text { Caled. }}}{ }$	sen, \%- Found	$\begin{aligned} & \text {-Nitroge } \\ & \text { Caled. } \end{aligned}$	$\begin{gathered} e n, \% \\ \text { Found } \end{gathered}$	- Sulfut	Found
1	H	H	180-181	8	$\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$	41.87	41.26	4.98	4.77	13.85	13.81	15.85	15.79
\because	H	CH_{3}	155-156	80	$\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$	4.43	44.31	5. 59	-1. 48	12.95	12.90	14..s3	14.81
3	CH_{3}	H	148-149	65	$\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$	44.43	44.36	5.59	5. 17	12.95	12.98	14.583	14.7
4	H	$\mathrm{C}_{2} \mathrm{H}_{5}$	135-136	82	$\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$	46.94	47.00	6.13	6.09	12.16	12.14	13.92	13.90
5	CaH_{3}	H	103-104	24	$\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$	46.94	46.19	6.13	6.56	12.17	12.2?	12.92	12.00
${ }^{6}$	CH_{3}	CH_{3}	93-94	45	$\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$	46.94	46.37	${ }^{6} .13$	6.40	12.17	12.35	13.92	1+.29
7	$\mathrm{C}_{3} \mathrm{H}_{7}$	H	106-107	66	$\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$	49.16	49.01	6.60	6.06	11.47	11.48	13.12	13.25
\checkmark	$\mathrm{C}_{2} \mathrm{H}_{3}$	CH_{3}	98-100	39	$\mathrm{C}_{10} \mathrm{H}_{16} . \mathrm{V}_{2} \mathrm{O}_{3} \mathrm{~S}$	49. 16	48.88	6.60	6.57	11.47	11.50	13.12	13.02
1	$\mathrm{C}_{3} \mathrm{H}_{\mathrm{i}}$	CH_{3}	$88-90$	${ }^{63}$	$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$	51.14	:11.34	7.02	7.28	10.54	10.84	12.41	12. 明 1
10	$\mathrm{C}_{6} \mathrm{H}_{5}$	H	161-162	16	$\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$	36.10	57.43	5.07	4.49	10.07	10.06	11.52	11.3
11	$\mathrm{C}_{6} \mathrm{H}_{3}$	CH_{3}	156-157	22	$\mathrm{C}_{64} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$	5-52	57.77	5.32	5.38	9 9,	9.38	10.97	11.00

drazone derivatives of substituted and unsubstituted 6-hydroxy-2-thiopyrimidine-4-carboxaldehyde (A) were prepared in an effort to obtain compounds with better therapeutic indices and to establish more fully their carcinostatic potentiality. The suggested essential role of the azomethine linkage in certain biochemical reactions ${ }^{3}$ and the fact that the hydrazino group frequently confers activity uporn a given structure, ${ }^{4}$ makes these compounds of considerable interest, and should serve as a fruitful field for further biological investigations.

There is a paucity of information concerning derivatives of A, in spite of the fact that the parent aldehyde has been previously reported. ${ }^{\text {º }}$ Since A bears a structural relationship to orotic acid, which is a precursor of nucleic acid pyrimidines, these compounds might interfere with the normal utilization of uracilcarboxylic acid and consequently result in biological interference with in wivo DNA synthesis, or with some other vital metabolic pathway.

A
The pyrimidine-4-carboxaldehyde (A) was prepared by a modification of the procedure described by Johnson and Cretcher ${ }^{5}$ (Chart I). The 5 - and N-1-substituted thiopyrimidine aldehydes have not been described previously. It was found that 6 -hydroxy-2-thiopyrimidine-4-carboxaldehyde could be prepared most conveniently by the reaction of ethyl γ, γ-dimethoxyacetoacetate (IIa) with the appropriate substituted thiourea (I). Subsequent cleavage of the actal linkage (III) afforded the col'responding pyrimidine-4carboxaldehyde (IV). The 5 -substituted derivatives of Table I were prepared from ethyl α-methyl- $\gamma, \gamma-$
(3) (a) D. E. Metzler, M. Ikawa, and E. E. Snell, J. Am. Chem. Soc., 76, 648 (1954); (b) B, Witkop and T. W. Beiler, ibid., 76, 5589 (1954).
(4) E. Jucker, Angew. Chem., 71, 321 (1959).
(5) (a) T. B. Johnson and L. H. Cretcher, J. Am. Chem. Soc., 37, 2144 (1b15): (b) T. B. Johnson and E. F. Schroeder, ibid., 53, 1989 (1931).
dimethoxyacetoacetate (IIb) or ethyl α-ethyl- γ, γ dimethoxyacetoacetate (IIc) and (Ia).

Interaction between Ib and IIa could afford, in principle, two cyclization products, III and IIIa. Support for structure III as opposed to IIIa is given by comparison of the ultraviolet spectrum of III (Fig. 1) and its oxidized product IIIb (Fig. 2) to the spectra reported for related pyrimidines such as 3 -ethyl-2-thiouracil ${ }^{6 a}$ and 3 -methyluracil, ${ }^{6 \mathrm{~b}}$ which contain the same cliromophore as III and IIIb. The spectral properties of III (Fig. 1) resembled the observed spectrum of 3-ethyl-2thiouracil. ${ }^{7}$ Comparison of III with the observed spectrum of 1-ethyl-2-thiouracil ${ }^{6 a}$ showed a distinct difference. Compound III was then oxidized carefully with alkaline hydrogen peroxide to IIIb and its ultraviolet spectrum was fond to be similar to that of 3-

[^1]Table II
6-Hydroxy-2-thiopyrimidine-4-carboxaldehydes (IV) ${ }^{a}$

No.	R	R^{\prime}	M.p. ${ }^{\circ} \mathrm{C}$
1^{b}	H	H	251 dec.
2^{c}	H	CH	$233-234$
3	CH_{3}	H	$215-216$
4	H	$\mathrm{C}_{2} \mathrm{H}_{5}$	$148-150$
5	$\mathrm{C}_{2} \mathrm{H}_{5}$	H	$155-157$
6	CH_{3}	CH_{3}	$213-215$ dec.
7	$\mathrm{C}_{3} \mathrm{H}_{7}$	H	$134-135$
8	$\mathrm{C}_{2} \mathrm{H}_{5}$	CH_{3}	$180-182$
9	$\mathrm{C}_{3} \mathrm{H}_{7}$	CH_{3}	$152-153$
10	$\mathrm{C}_{6} \mathrm{H}_{\overline{3}}$	H	$259-260$ dec.
11	$\mathrm{C}_{6} \mathrm{H}_{5}$	CH	$225-227$

Formula	-Carbon, \%-		-Hydrogen. \%- Caled. Found		-Nitrogen, \%-		--Sulfur, \%-	
	Caled.	Found			Caled.	Found	Caled.	Found
$\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$	38.46	38.41	2.58	2.54	17.94	17.89	20.53	20.44
$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$	42.35	42.15	3.56	3.50	16.47	16.32	18.81	18.79
$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$	42.35	42.20	3.56	3.87	16.47	16.48	18.81	18.84
$\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$	45.64	45.61	4.38	4.36	15.21	15.19	17.41	17.40
$\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$	45.64	46.25	4.38	4.75	15.21	15.20	17.41	17.90
$\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$	45.64	45.21	4.38	4.38	15.21	15.28	17.41	17.45
$\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$	48.47	48.11	5.08	5.48	14.13	14.11	16.17	16.31
$\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$	48.47	47.66	5.08	5.08	14.13	13.98	16.17	16.03
$\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$	50.92	51.61	5.70	5.63	13.20	13.31	15.11	15.00
$\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$	56.88	57.32	3.47	3.70	12.06	12.06	13.81	13.67
$\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$	58.52	58.65	4.09	4.17	11.38	11.42	13.02	12.92

${ }^{a}$ Hydrolysis of the acetal (III) was carried out by refluxing for 10 min . in 10% aqueous sulfuric acid. The yields in all cases were 100%. Compounds 1 to 11 were recrystallized from water. ${ }^{b}$ See ref. 5 b . ${ }^{\circ} \mathrm{S}$. Borodkin, Thesis, University of North Carolina, 1961 , p. 132, m.p. $232-233^{\circ}$.

Table III
Schiff Base Derivatives of Substituted and Unsubstituted 6-Hydroxy-2-thiopyrimidine-4-carboxaldehydes (IV)

No.	Amine used	R	R'	M.p., ${ }^{\circ} \mathrm{C}$.	Yield, \%	Formula	Carbon, \% Calcd. Found		Hydrogen, \% Calcd. Found		Nitrogen. $\%$ Calcd. Found		Sulfur. $\%$ Calcd. Found	
1	Ethanolamine	H	H	150-151	66	$\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}_{8} \mathrm{OS}$	42.21	42.14	4.52	4.44	21.10	21.00	16.08	16.11
2	Allylamine	H	H	171-172	71	$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{~N}_{8} \mathrm{OS}$	49.23	49.01	4.62	4.58	21.54	21.41	16.41	16.33
3	Isopropylamine	H	H	141-142	63	$\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{OS}$	48.73	48.94	5.58	5.41	21.32	21.24	16.24	16.00
4	Propytamine	H	H	147-148	71	$\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{OS}$	48.73	48.70	5.58	5.49	21.32	21.30	16.24	16.15
5	lsobutylamine	H	H	149-150	76	$\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{OS}$	51.18	51.11	6.16	6.09	19.91	19.98	15.16	15.00
6	3-Methoxypropylamine	H	H	115-116	70	$\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$	47.57	47.55	3.72	5.84	18.50	18.46	14.09	14.01
7	Aminoacetaldehyde dimethylacetal	H	H	118-119	65	$\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$	44.26	44.07	5.73	5.70	17.21	17.09	13.11	13.00
8	3 -Dimethylaminopropylamine	H	H	110-111	62	$\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{OS}$	49.79	49.65	7.05	7.00	23.24	23.16	13.28	13.16
9	Cyclopropylamine	H	$\mathrm{C}_{2} \mathrm{H}_{5}$	211-212	60	$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{8} \mathrm{OS}$	53.79	53.71	5.87	5.81	18.82	18.79	14.36	14.24
10	Cyclohexylamine	H	H	169-170	66	$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{8} \mathrm{OS}$	55.69	55.63	6.33	6.24	17.72	17.68	13.50	13.47
11	Benzylamine	H	H	132-133	68	$\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{OS}$	58.77	58.69	4.48	4.39	17.14	17.03	$1 \cup .06$	3.00
12	Cyclopentylamine	H	$\mathrm{C}_{2} \mathrm{H}_{5}$	172-173	62	$\mathrm{C}_{12} \mathrm{H}_{47} \mathrm{~N}_{3} \mathrm{OS}$	07.34	57.31	6.81	6.80	16.72	16.64	12.76	12.69
13	p-Aminobenzoic acid	H	CH_{3}	318-319	69	$\mathrm{C}_{3} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$	53.97	53.86	3.83	3.79	14.53	14.46	11.08	11.01
14	p Anisidine	H	CH_{3}	295 dec .	71	$\mathrm{C}_{13} \mathrm{~N}_{3} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$	56.50	56.43	5.10	5.00	13. 21	14.98	11.60	11.49
15	p-Anisidine	H	$\mathrm{C}_{2} \mathrm{H}_{5}$	279-280	73	$\mathrm{C}_{4} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$	57.91	57.86	5.55	5.41	14.47	14.31	11.04	10.96
16	Cycloheptylamine	H	$\mathrm{C}_{2} \mathrm{H}_{6}$	134-135	76	$\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{OS}$	60.18	60.09	7.37	7.49	15.04	15.00	11.48	11.33
17	Cyclooctylamine	H	$\mathrm{C}_{2} \mathrm{H}_{5}$	157-158	68	$\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{OS}$	60.98	60.90	8.53	8.50	14.32	14.20	10.93	10.76
18	Cyclopentylamine	$\mathrm{C}_{6} \mathrm{H}_{5}$	CH_{3}	186-187	52	$\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{OS}$	65.15	65.01	6.11	5.96	13.40	13.24	10.23	10.09
19	Oleylamine	H	$\mathrm{C}_{2} \mathrm{H}_{3}$	100-101	65	$\mathrm{C}_{24} \mathrm{H}_{41} \mathrm{~N}_{3} \mathrm{OS}$	68.41	68.66	9.78	9,63	10.02	10.00	7.65	7.58
20	Octyldecylamine	H	$\mathrm{C}_{2} \mathrm{H}_{0}$	97-98	72	$\mathrm{C}_{25} \mathrm{H}_{45} \mathrm{~N}_{3} \mathrm{OS}$	68.97	68.83	10.33	10.21	9.65	9.48	7.36	7.21

methyluracil ${ }^{7}$ and distinctly different from that of 1-methyluracil. ${ }^{6 b}$ Thus, the ultraviolet absorption spectra contributed confirmatory evidence for the structure assigned (IV).

The corresponding Schiff bases and hydrazones of IV were prepared in the usual manner, utilizing absolute ethanol or glacial acetic acid as the solvent (Tables III and IV).

Screening Results.-The various pyrimidine derivatives were tested $v s$. the Ehrlich ascites carcinoma in Swiss-Webster white mice by procecures described previously. ${ }^{8}$ The results are recorded in Table V in which compounds are designated by the table number (II-IV) and compound number (Arabic numerals). The rapid increase in body weight of control mice is a measure of the accumulation of tumor cells and ascitic fluid (column 4). However, the total packed-cell

[^2]volume of tumor cells (TPCV) (columns 5 and 6) determined on the 6th day after intraperitoneal transplantation of the tumor is the most reliable index of the multiplication of the tumor cells. The dosages recorded in column 2 were divided into two intraperitoneal injections per day commencing 24 hr . after transplantation of the tumor and continuing for 4.5 days.

Judged on the basis of significantly lower TPCV in the treated mice, with relatively low toxicity, several of the compounds listed in Table V showed sufficient activity to warrant further study. The majority of the Schiff bases of 2-mercapto-6-oxopyrimidine-4-carboxaldehyde showed similar or less activity against the tumor than did the parent aldehyde. A number of the hydrazones exhibited greater activity than did the parent aldehyde. However, the majority of the hydrazones had low solubilities in water; and this factor probably tended to limit their effectiveness. Of the Schiff bases, III-1, III-4; III-6, III-10, III-17, and III-19 had the greatest activity. The oleylamine

T＇able：I

Nir．	Reagent used	U	R^{\prime}	M．p．，${ }^{\text {\％}}$（	そeel．	F＇remmiar	Carb （ ithel．	Fonm	Hydrog （ated．	Foumel	$\begin{aligned} & \text { Vitros } \\ & \text { caled. } \end{aligned}$	elle e	(and	$\begin{aligned} & 11 \prime^{\prime}, \\ & \text { F'mind } \end{aligned}$
$1{ }^{\text {t／}}$	Hydroxylamine HCl	H	H	250 dec ．	12	$\mathrm{CbH}_{5} \mathrm{C}_{3} \mathrm{O}_{4} \mathrm{~s}$	95． 07	35，171	≥ 4	$\because 73$	$2+80$	24.31	is ${ }^{\text {\％}}$	18.7
$2^{\prime \prime}$	Hydroxylantine HCl	H	CH／3	245 dee．	89	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$	38.91	88．7\％	\＆ 88	$\because .74$	－2，${ }^{2}$	218．3\％	17．3i	17.9
$3{ }^{\prime \prime}$	Thiosenicarbazide	11	II	200 dec．	：0	$\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{NSOS}_{5}$	：11．4：3	\％1 32	：3 17	－	30 3.9	30.23	－	$\because 2$
1	senuicarbazide HCl	11	11	$278-274$	88	（ $\mathrm{H}_{1} \mathrm{H} \mathrm{N}_{5} \mathrm{O}_{5} \mathrm{~s}$	38.80	33．it	$\therefore 30$	3．24	\％2．8i	39．6．4	$\therefore 0 \cdot 3$	14 14
3	Nitroaninogranidine＇	11	1 H	295 dee．	75	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{7} \mathrm{O}_{3} \mathrm{~S}$	$\because 7.31$	$\underline{-7.88}$	：12	： 110	$37.0 t ;$	37.01	$\because!$	$1: 10$
19	Thiosenicarbazide	1.	（ $\mathrm{H}^{1} \mathrm{H}_{3}$	300 dec．	$8!$	（－174 $\mathrm{N}_{6} \mathrm{O} \mathrm{S}_{4}$	3.4 .52	4 4	3.73	3.18	98．70	$\underline{28.16}$	2038	2， 10
7	Senticarbazide HCl	1	（． H_{3}	290－291	81	（ H H／NsO	34．0！	3） 93	30	3.94	（11） 8 ？	30.81	$14: 1$	119
8	Semicarbazide HC1	CH_{3}	11	292－293	82	（ $\mathrm{H}_{1} \mathrm{H}_{3} \mathrm{~V}_{6} \mathrm{O}_{2} \mathrm{~S}$	36.90	34． 8.3	3 \％ 0	4.02	31）．82	30．（b）	1411	14．15\％
1	Thiosemicarbazide	H	Colls	280－281	8.		：77．34	$37: 1$	4． 31	$+09$	－7	$\because 7.00$	24.9	$\because 1 \times 1$
10	Stolicarbaide HCl	CH3	（＊${ }^{\text {a }}$	277－278	87	（ H H．N．On	30.64	3b， 0	1．${ }^{\prime}$ ，	$\therefore 01$	28.91	28.85	13.3	33， 13
11^{14}	Nitrouninognanidine	1 L	CH_{1}	279－280	88	Cathenoms	\％\％－，	3） 21	－1 14	4.31	30.87	30.74	11．8	1）int
12	Thiosemicarbazise	$\mathrm{C}_{3} \mathrm{HF}_{7}$	1 H	$252-238$	77	C． $\mathrm{H}_{44} \mathrm{Na}_{3} \mathrm{O} \mathrm{S}_{2}$	： 3	3！ 103	$\therefore 18$	3.04	$2 \therefore .72$	25．19	\cdots	$2: 11$
13	2.4 －Minitromhenyllydrazine	H	11	300 ilec．	79	$\mathrm{Cu}_{1} \mathrm{H}_{6} \mathrm{Na}_{4} \mathrm{O}_{5} \mathrm{C}$	2）．0\％	39.00	$\because 18$	： 3.00	24.84	24.7%	48	$1)$
14^{h}	Isonicotinic acid hydrazide	11	11	300 dec ．	7%	Cohaviont	18.00	47.8%	$\because 2$	3.10	$2 \mathrm{i}+4$	25.32	11 ，	11．
15°	p－1y ydruzinobenzoic acid	H	11	$349-350$	71	$\mathrm{Cl}_{1} 1 \mathrm{H}_{1} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~L}$	＋9．31	14．28	1．33	1.01	19.17	19.11	11.0	${ }^{11} \mathrm{~S}$ S
$16^{\prime /}$	Esoniontinic acid hydrazide	Cl_{3}	11	290－994	00	CuHuNs）s	41.82	16． 81	$\therefore \mathrm{A}, 3$	3.76	$2+.21$	$\underline{-1.09}$	11.08	11.101
$17^{\text {A }}$	Isunicotinic acid lyydrazide	11	（11］	32：－321）	84	（ $\mathrm{C}_{2} \mathrm{H}_{1} \mathrm{~N}_{5} \mathrm{O}$ ¢	10． 82	457	： 8 \％	$\because 81$	24.21	24.13	！ 1 ：18	10．10
18	Sentictrazide 11 Cl	$\mathrm{C}_{6} \mathrm{H}_{1} \mathrm{l}_{5}$	H	$\because 75 \cdots 280$	7%	（12HuN5O2	49）． 14	44.50	1．11：	$+09$	21.18	24．01	11．011	！i（if）
$1:$	Thiosennicarbazide	（ 1514	11	2933－664	78	（ $\because 11 \mathrm{H}_{2} \mathrm{~N}_{5} \mathrm{O}$ ）	17.04	15.10	（1） 0 ）	1．00	2．2．68	22．74	20.93	200
$\because 0^{+4}$	Benzenesulfonyllydrazide	CH：	1 I	192－193	88	（ $\mathrm{CH} \mathrm{H}_{\text {c }} \mathrm{N}_{4} \mathrm{O}$ an	1．t．4．3	14.24	：$-: 1$	$\therefore .18$	17.27	1700	19.7	（1） Cl
$\because 1{ }^{\prime}$	p－Hydrazinobenzoie acin	CH_{3}	1 I	$323-324$	88		31．31	$\therefore 1.20$	$\because: 7$	3.90	18.41	18．5	： 11. is 4	10.15
22^{i}	p－llydrazinobenzaic acid	11	（ $\because \mathrm{H}:$	34；dee．	11	（1shuNomas	61.31	i1）	$\therefore: 17$	4.01	18．4．1	18．34	（0） $\mathrm{B} \cdot \mathrm{l}$	10， i
2：	4－Hhorophenylhydrazine HC！	11	C＇17）		1：3	（ $1,1113 \mathrm{~N}_{4} \mathrm{O}$ ） s	（i）+1	碞迷	4.18	4．	16．17	1：1．11	11）：	11）$\because:$
$\because 1$	p－Nitrousenylıydrazine	11	CuH	800 der	7！		48.75	48.6	4.11	4．3）	$\underline{21.87}$	21.74	10.01	10.610
\cdots	Thosenticarbazide	Cill	（11）	$\underline{20-20)}$	84	（ $10 \mathrm{Hm} \mathrm{N}_{\text {cos }}$	41.41	4＋4． B	4.10	4.00	20.82	21.001	10.6	1：301
$26^{\prime \prime}$	Isonicotinic acid hydrazide	11	$\mathrm{C}_{4} \mathrm{H}_{5}$	$304-305$	83	（ ${ }_{13} \mathrm{H}_{5} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{C}$	\％1．48	$\therefore 1.81$	4．：11	420	23.09	22.46	11） Sa	111． 11
－$\square_{\text {¢，}}$	1＇duenesalfonylliydrazine	11	OH：	178－179	11	$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{C}_{4} \mathrm{O}_{3} \mathrm{~S} 4$	＋1．14	（1．） 9	＋．17	4.05	16.50	14.31	18.6	1！（1）
－8，	Toluenesalionyllydrazine	${ }^{1} \mathrm{H}_{4}$	11	18t－145	70	$\mathrm{C}_{18} \mathrm{H}_{4} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}_{4}$	tei．14	4．12	4.17	4.11	19，50	14．42	16.4	18．$!1$
$23^{\prime \prime}$	Benzenesalfonylhydrazide	11	（ $\because 15$	$1(6)-19.) \cdot$	78	$\mathrm{C}_{3} \mathrm{HH}_{4} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}_{2}$	411.14	41； 11	1．17	＋12	11．5．5	1（i，＋1	$18 \cdots$	18．88
30	4－（hlurophenylhydrazine	1 H	（ $\% \mathrm{H}_{5}$	$\cdots 160-261$	74	$\mathrm{ClaH}_{13} \mathrm{~N}_{4} \mathrm{OCLS}$	50．51；	－50．80	1．24	＋14	18．15	18.0%	10．38	10
31；	3－Nitrephenylhydrazine	11	CaH_{5}	274－275	$8:$	$\mathrm{C} 2 \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}_{3}{ }^{2}$	$48.8:$	4．）（1）	t． 111	1． 02	21.93	2：00）	10193	： 4 ： 1
\％	2．4－Dinitrophenylsenicar－ bazide	11	CH_{3}	234－2\％	7：1	$\mathrm{Cr}^{4} \mathrm{HeNaO}$	41．98	11.08	$\because 2$	A 11）	$\underline{21.0 i t}$	$\underline{2101}$	75	－7：
43	f－I＇henylsemiontinzide	11	$\mathrm{Cr}_{2} \mathrm{H}_{5}$	－79－280	81		32：48	$\therefore 2.7$	1．7：	1，ith	$2 \underline{207}$	22.00	：011）	ย ！

＂Recrystallized from 50% ethanol．＂Recrystallized from x $\%$ e ethanol．CRecrystallized from water．${ }^{4}$ Remystallized fronn erh－ ：mol．EReaction solvent was glacial acetic acid．I Prepared by the method described by R．Philips and J．F．Willians，J．Ah．Chom． Soc．，50， 2465 （1928）．${ }^{8}$ Recrystallized from dimethylformanide－whter；all other conpounds listed were recrystallized froni DMF－ $\mathrm{H}_{2} \mathrm{O}$ unless otherwise noted．${ }^{h}$ Not recrystallized，obtained inalytically phre．＇Reaction solvent was an erpial mixture of ethanol and glacial acetic acid．Recrystallized from acetic acid．

Fig．1．－－4－（Dimethoxy ）nethyl－1－methyl－6－oxo－2－thiopyrinidine in aqueous solution at pH valies indicated．

Schiff base，III－19，was the most active of that series． In the hydrazone series，IV－3，IV－4，IV－15，IV－18， IV－20，IV－25，IV－27，and IV－28 were most active． The benzenesulfonylhydrazone，IV－20，and the toluene－ sulfonylhydi＇azone，IV－28，showed the greatest activity of both series of compounds．In general，substitution of the pyrimidines in the 5 －position with methyl or ethyl
groups tended to decrease activity slightly in compari－ son with corresponding pyrimidines which were masub－ stituted in that position，but there were some exceptions to this generality．F＇urther studies of these and related pyrimidine derivatives will be undertaken．

Experimental ${ }^{9}$

Alkylthioureas．－This methyl compound was nthtained hy ： method previonsly described in the literature，${ }^{10} \mathrm{~m} . \mathrm{p} .120-121^{\circ}$ （lit．${ }^{10} \mathrm{~m} . \mathrm{p} .120 .5-121^{\circ}$ ）．The ethylthisuren，in．p． $\left.104-10\right)^{\circ}$ （lit．${ }^{10}$ m．p． $103-106^{\circ}$ ）and propylthiminea，m．p．109－110 ${ }^{\circ}$（iit．${ }^{11}$ in．p． 110° ）were prepared in an malogous manmer．Phenst－ thioure：i，m．p．153－154 ${ }^{\circ}$ ，was obtained conmiercially．
Ethyl $7, \boldsymbol{\gamma}$－Dimethoxyacetoacetate．－This componnd was pre－ pared by a modification of the procedure reported in the litera－ ture ${ }^{12}$ for ethyl $\gamma, \%$－diethoxyacetoncetate．Ta a refluming mixture of 140 g ．（ 0.91 mole）of methyl dimethoxyacetate ${ }^{13}$ and 138 g ． （ 1.57 mole）of ethyl acetate， 24 g ．（ 1.04 g ．－atomi）of metalli： sodimm was added slowty．An additional 139 g．of ethyr aretate and 4 g ．of metallir sodium were introduced into the reaction

[^3]Table V
${ }^{a} \mathrm{~T}=$ treated group; $\mathrm{C}=$ control group; $\mathrm{TPCV}=$ total packed-cell volume of tumor cells; average mortality of control group to day of assay $=40 \%$.

Fig. 2.-4-(Dimethoxy)methyl-2,6-dioxo-1-methylpyrimidine in aqueous solution at pH values indicated.
mixture, and stirring and heating were continued until all the sodium dissolved. The solution was allowed to remain overnight at room temperature, poured over crushed ice, and acidified with concentrated hydrochloric acid. The oil was removed and the
aqueous layer extracted 3 times with $300-\mathrm{ml}$. portions of ether. These washings were added to the organic phase and the ethereal solution washed with 2% sodium carbonate, dried over sodium sulfate, and the ether renoved in vacuo. Subsequent fractionation gave 80% of a nearly colorless liquid which distilled at $98-$ 100° (5 mm .).
Anal. Caled. for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{5}: \mathrm{C}, 50.52 ; \mathrm{H}, 7.42$. Found: C , 50.34; H, 7.30 .

The following were prepared in an analogous manner:
(a) Ethyl α-methyl- γ, γ-dimethoxyacetoacetate (70% yield), b.p. $115-117^{\circ}(8 \mathrm{~mm}$.).

Anal. Calcd. for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{5}: \mathrm{C}, 52.93 ; \mathrm{H}, 7.89$. Found: C , 52.88; Н, 7.76.
(b) Ethyl α-ethyl- γ, γ-dimethoxyacetoacetate ($70 C_{c}^{c}$ yield), b.p. $110-112^{\circ}(5 \mathrm{~mm}$.$) .$

Anal. Calcd. for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{5}$: C, $55.03 ; \mathrm{H}, 8.31$. Found: C, 54.97 ; H, 8.26.

4-(Dimethoxy)methyl-6-hydroxy-1-methyl-2-thiopyrimidine (III).-To 11 g . (0.47 g . atom) of sodium in 250 ml . of absolute ethanol, 45 g . (0.5 mole) of dry methylthiourea and 95 g . (0.5 mole) of ethyl γ, γ-dimethoxyacetate were added, and the solution was refluxed for 2 hr . After about 1.5 hr . a solid had fornied. The mixture was cooled to room temperature, the solid removed by filtration, washed with two $30-\mathrm{ml}$. portions of ethanol, and dissolved in 200 ml . of water. The solution was filtered, and upon acidifying with 10% hydrochloric acid, a pure white crystalline solid separated, which was collected by filtration, washed with 100 ml . of water, dried, and recrystallized from ethanol, yielding 70 g . $\left(65 \%\right.$) of product, m.p. 148-149 ${ }^{\circ}$. Table I lists the compounds prepared by a similar p:ocedure. Table

II lists the compounds prepared by hydrolyzing the pyrimidine acetal.

To : 1.5 g . sample of III, dissolved in 20% sodium hydroxide. 50 nil . of 3% hydrogen peroxide was added and the mixture heated for 5 min. After cooling to 0°, it was acidified with hydrochloric :cid and the resulting solids were collected by filtration and washed with cold water. Crystallization from ethanol-ether produced 90% of 4 -(dimethoxy)methyl-2,6-dioxa-1-methylpyrimidine (IIIb), a white (rystalline solid, nup. 137° (cor.). The nltraviolet spectrum was consistent with the proposed structure. ${ }^{14}$

Anal. Cated. for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}_{1}: \mathrm{C}, 47.99 ; \mathrm{H}, 6.04: \mathrm{N}, 13.99$. Fonnd: C, $47.90 ; \mathrm{H}, \overline{3} .98 ; \mathrm{N}, 14.00$.

Schiff Bases from Pyrimidine-4-carboxaldehydes.-These componinds were prepared by the interaction of the substituted and masubstituted pyrinidine-4-carboxaldehyde with the npproprinte amine. A solution of 0.01 mole of the aldehyde in : minimmin amount of hot absolnte ethanol was prepared. Ta this was added 0.01 mole of the amine and the mistnre refluxed for 30 min. on a stean bath. The reaction mixture was placed

[^4]in a refrigerator overnight, the product collected on a filter, and reorystallized from ethanol. The Schiff bases are shown in Table III.
Hydrazones from Pyrimidine-4-carboxaldehydes.-- These derivatives were prepared by the interaction of the pyrimidine aldehydes with the appropriate hydrazine or hydrazide. To it solution of 0.01 mole of the aldehyde in a mininunn amount of hot absolute ethnol or glacial acetic acid was added 0.01 mole of the hydrazine or hydrazide reagent dissolved in a minimmun armmat of the same sulvent. The mixture was refluxed for 10 min. and then plawed in a refrigerntor overnight. The prodnct was colleated by filtration and recrystallized from ethanol or acetic arid. The hydrazones are shown in Table IV.

Acknowledgment.-We wish to thank Mr. Robert Morris for help in preparing some of the intermediate compounds required during the course of this work and to MIr_{1}. Carl W. Anderson for assistance in the screening tests. We are grateful to Dr. J. J. Fox and Dr. A. F. Hirsch, of the Sloan-Kettering Institute for Cancer Research, for their interest and suggestions on the ultraviolet studies.

The Synthesis and Antiinflammatory Activity of Some Derivatives of 1,3-Diphenylbarbituric Acid

A. J. Vazakas and W. Walden Benneits, Jr.

The Research Laboratories, The National Drug Company, Division of Richardson-Merrill Inc., Philarlelphia 44, Pennsylvania
Recewed October 24, 1.963

Abstract

A series of 1,3-diphenylbarbituric acid derivatives las been prepared and evaluated for antiinflammatory activity. The compounds were found to be lese toxic and less active than phenylbutazone by the testing procedures used. The most potent member of the series was 1,3-diphenyl-5-(3-methyl-2-butenyl)barbituric acid. Its activity compared quite favorably with that of phenylbutazone on parenteral administration but, when given orally, it proved artive only at high dosages.

The recent communication by Scarborough and McKimey ${ }^{1}$ describing the preparation and uricosuric activity of some substituted 1,3-diphenylbarbituric acids prompts us to report the results of a related inrestigation.

As part of a research progiam devoted to the sylıthesis and evaluation of organic compounds as potential antiinflammatory agents, it was of interest to us to examine a series of 1,3 -diaryl- $\overline{5}$-substituted barbituric and 2 -thioharbituric acids (I), whose relationship to phenylbutazone (II) is evident.

II

$$
\begin{aligned}
& \mathrm{X}=\mathrm{O} \text { or } \\
& \mathrm{R}=\text { alkyl, cycloalkyl, } \\
& \mathrm{R}^{\prime}=\mathrm{aryl}, \text { alkenvl, aralkyl } \\
& \mathrm{CH}_{3}, \mathrm{OCH}_{3}
\end{aligned}
$$

A search of the literature disclosed that, while there had been sporadic reports ${ }^{2}$ on the preparation of $\mathrm{N}, \mathrm{N}^{\prime}$ -
(1) IK. C. Scarborough and G. R. Mekinney, I. Med. Pharm. Chem., 5, 175 (1, 962).
(2) (a) M. A. Whiteley, J. Chem. коc., 91, 1330 1907); (b) M. A. Whiteley and II. Mountain, Proc. Chem, Soc. 25, 121 (1909); (c) N.. V. Koshkin, Zh. Ohshch. Khim., 5, 1460 (1935): (d) I. N. D. Dass and S. Dutt, Proc. Thdict: leod. Sci., 8A, 145 (1938).
diarylbarbituric and 2-thiobarbituric acids, little inlterest had been shown in the 5 -substituted analogs of these compounds. Whiteley ${ }^{2 a, b}$ reported the preparation of several compounds of structure I by means of the zinc-acetic acid reduction of the corresponding 5 alkylidene derivatives. Although we were able to obtain one compound (19, Table I) in good yield by this method, a more general and reliable procedure, and one which we used almost exclusively for the preparation of the compounds listed in Table I even though yields were low, proved to be the condensation of carbanilide or thiocarbanilide with substituted malonic acids in the presence of acetyl chloride.

It has been reported ${ }^{2 c}$ that sodiomalonic ester and carbanilide or thiocarbanilide in absolute alcohol or benzene fail to form N, N^{\prime}-disubstituted barbituric acid derivatives. We found that the desired reaction will occur under conditions of elevated temperature and succeeded in preparing 1,3 -diphenyl-5-amylbarbituric acid ($\mathrm{I}, \mathrm{R}=n-\mathrm{C}_{5} \mathrm{H}_{11}, \mathrm{R}_{1}=\mathrm{H}, \mathrm{X}=\mathrm{O}$) from the appropriate reactants in xylene at $140-145^{\circ}$. However, purification of the product proved troublesome, eventually requiring vacuum distillation to give a low yield of pure compound, and this procedure therefore received limited attention as a potential alternate route to I.

Pharmacology.-All of the compounds synthesized were evaluated for antinflammatory activity by means

[^0]: (1) This investigation was supported by Public Health Service Research Grants C-6364, CA-06364-02, and CA-02756(C7) from the National Cancer Institute, and in a small part from the American Cancer Society Institutional Grant to the University of North Carolina.

[^1]: (6) (a) D. Shagar and J. J. Fox, Bull. Soc. Chim. Belges, 61, 293 (1952); (b) Biochim. Biophys. Acta, 9, 199 (1952).
 (7) Based on the numbering systein used, the alkylated nitrogen in this structure corresponds to the $\mathrm{N}-1$ of the pyrimidine-4-carboxaldehyde (IV).

[^2]: (8) (a) J. E. Wilson, J. L. Irvin, J. E. Suggs, and K. Liu, Cancer Res., 19, 272 (1959); (b) J. E. Wilson, J. E. Suggs, and J. L. Irvin, Cancer Res. Supplement, 21, 692 (1961).

[^3]: ，9）Elementary mieroanalyses by Weiler and Strauss，Oxford，Lumbut， and Spang Microanalytical Laboratory，Ann Arbor，Miel．Melting points are uncorrected but were determined using a＂Mel－Temp＂apparatos with ic thermometer calibrated for exposed sten．This work was completed before the requirement for corrected melting points was introduced by Anerican Chemical Society Journals．The ultraviolet absorption spectra were deter－ mined with a Beckman DK－1 spectrophotometer．Sorensen phospliate huffers were employed to obtain pH 7.2 and 0.01 N NaOH was taken as essell－ tially equal to pH 12．0．The pH values were checked with a calibrated ghass electrode．
 （10）M．L．Moore and 1．S．Crossley，＂Organic Syntheses，＂Coll．Vol．1II， John Wiley and Sons，New York，N．Y．．1935، p， 617.
 （11）O．Hechit，Ber．，23， 281 （1890）．
 （12）T．B．Lohnson and I．．A．Mikeskn，J，Am．Chem．Soc．，41，s10（1419）．
 113）We wish to thank Max G．Gergel，Colmubia Organic Chemical（\％． Ine．，Columbia，S．C．，for making this compond avialable t． 1 ．

[^4]: (14) According to D. Slugar and A. J. l'us (see ref. 6b) 3-bethylaracil has $\lambda_{m a x} 258.5 \operatorname{m} \mu$ ($\epsilon 300$) occurring tetween $\varphi H 3.0$ and 7.2 and $\lambda_{\text {nax }} 218 \mathrm{~m} \mu$ (e 7060) at pH 12.0 . The 1-methyluracil has λ_{m} mx $267.5 \mathrm{~m} \mu(\epsilon 9750)$ at pH 7.2

